skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Lee, Chul"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. WiFi received signal strength (RSS) environment evolves over time due to the movement of access points (APs), AP power adjustment, installation and removal of APs, etc. We study how to effectively update an existing database of fingerprints, defined as the RSS values of APs at designated locations, using a batch of newly collected unlabelled (possibly crowdsourced) WiFi signals. Prior art either estimates the locations of the new signals without updating the existing fingerprints or filters out the new APs without sufficiently embracing their features. To address that, we propose GUFU, a novel effective graph-based approach to update WiFi fingerprints using unlabelled signals with possibly new APs. Based on the observation that similar signal vectors likely imply physical proximity, GUFU employs a graph neural network (GNN) and a link prediction algorithm to retrain an incremental network given the new signals and APs. After the retraining, it then updates the signal vectors at the designated locations. Through extensive experiments in four large representative sites, GUFU is shown to achieve remarkably higher fingerprint adaptivity as compared with other state-of-the-art approaches, with error reduction of 21.4% and 29.8% in RSS values and location prediction, respectively. 
    more » « less
    Free, publicly-accessible full text available March 3, 2026
  2. Free, publicly-accessible full text available December 1, 2025
  3. null (Ed.)
  4. null (Ed.)